You are currently viewing Electrostatics – Or Why Clothes Release Sparks
Having dry skin and wearing certain clothes on dry winter days leads to electrical discharges between persons

You hear the crackling noise or may be even see some little bluish sparks when you pull off your clothes. Here is the explanation for the phenomenon and where else it occurs. Read to be able to answer the questions, why do clothes release sparks, and why do clothes clinch.



Blue Sparks in the Environment

Yesterday evening, we came home from dancing to a live band. I took my key out of my dance bag to unlock the door. There it was again, when the key touched the lock. The typical winter phenomenon of the little blue spark in dry, cold weather in Alaska. This phenomenon sometimes even occurs when little twigs touch each other in calm wind. An electrical charge was released.

Now what has this quite normal event to do with fashion and style?


Electrostatics and the Physics of Clothes

On the first view nothing, but on second view a lot. The same phyical process makes any synthetic fabrics clinch. This physical law drives women loving and/or having to wear skirts/dresses despite of cold weather up the wall! Everyone using a dryer probably has come across some fabrics sticking to each other. When pulling them apart, electrical charge is released. Well, let’s dwell down to the physics of these electric shocks.

Already in ancient times, the Greeks already realized that some materials like to attract small, light particles after they have been rubbed. One of these materials, amber, they even gave the name electron (Greek ήλεκτρον). The materials, or in our case fabrics, act on each other by electrostatically induced forces between an electron and a proton.

This force is about 36 orders of magnitude larger than the gravity force!



electrostatic silk fringes clinching towards fur
Electrostatic: Charged silk fringes of a Pavlova Russian wool scarf resist gravity. They are orientated nearly parallel to the ground, and point towards fur.



How Do the Clothes Get Charged?

Rubbing two non-conductive fabrics can produce static electricity. This “rubbing” happens unintentionally between layers of clothes whenever you move. However, friction is not the only cause for build-up of static electricity. Two non-conductive fabrics also can become charged by being worn on top of each other. This means when you layer clothes stay comfortable in cold weather outfits.

What actually happens is that a charge builds up on the fabric due to the contact with the other fabric. Thus, a charge exchange occurs always when you separate the two fabrics that were in contact with each other. However, we only notice the effects of charge exchange (the little blue spark) when at least one of the fabrics has a huge resistance to electrical flow. Concretely speaking, the transfer of electrical charges from or to the hugely resistant fabric is on hold long enough for the effects of electrostatics to be audible, and visible by little blue sparks.

It even may happen when you pull off a sweater!



Why Do Clothes Release Sparks?

The charges remain on the fabric until they either discharge producing these sparks or are conducted to ground. In both cases, the charge is neutralized. Some people may also have a body chemistry that leads to an access of ions. That means they see the phenomenon of sparks more often than others.

In summary, the familiar phenomenon of the static ‘shock’ is nothing else than the discharge due to the neutralization of charge built up in the fabrics from contact with non-conductive fabrics. It is a natural law.


Which Fabrics Release Sparks?

Typically, winter fabrics like, for instance, tweed or a knitted wool sweater have a relatively rough texture. Therefore, charging through contact takes much longer than charging through friction among these fabrics. However, their rubbing on each other or on dry skin enhances the amount of adhesive contact between them or between them and the skin.

These clothing materials tend to clinch, i.e., get charged:

  • Silk
  • Nylon
  • Polyester
  • Fur
  • Fine spun wool without rough texture
  • Leather


Other materials that release sparks are human hair, paper, lead, aluminum and dry human skin.

When you kiss your significant other in Alaska on a dry 40 below freezing day without winds, it’s an electrical kiss.


Tips to Reduce Electrostatic Charging of Clothes

Now what to do about potential, annoying discharge? Electrical insulators are materials that do not conduct electricity. They can generate, and hold a surface charge. Therefore, they rarely produce a charge imbalance. Examples are rubber, wood, or plastic. Consequently, when wearing an electrically insulating fabric, no charge is transferred during contact with another fabric. In other words, the charge stays on the respective fabric. Of course, this solution is not perfect.

While you can wear stylish rubber boots, plastic clothing is only for commencement regalia from recycled plastic bottles. Shoes or sandals with wood sole are stylish, but not everyone can walk in them.

Of course, you cannot change physical laws.

However, you can minimize electric sparks from clothing with the following tricks:

  • Moisturize your skin because fabrics rubbing against dry skin lead to charging.
  • Wear cotton, coarse wool or even no underwear instead of silk or synthetic underwear to avoid issues.
  • Watch your shoes soles as some synthetic rubber soles or synthetic heels generate a lot of static electricity. Then avoid wearing those shoes on dry cold days.
  • Try to “discharge” by touching wood before you unlock the door/touch metal.



How Some Alaskans Solve the Problem of Electrostatics

Finally, something I never tested myself and never will test it because it is messy. Anyhow, the story is at least fun telling.

One dry, cold 40 below at a dance place, a dance girl friend (who was born and raised in Fairbanks) asked me, whether I have some skin lotion or hair spray. I looked quite irritated about these alternatives. She explained she wanted  “to spread it over her pantyhose so the dress does not stick to it.” Unfortunately, nobody had lotion or hair spray (which I considered a hint that this method does not work).

Because I never tried her trick, I do not recommend it. However, I had wished I had had lotion or hair spray for her. Just to see whether it really works.



Dransfeld, K., Kienle, P. 2021. Physik: II Physik. Elektrodynamik und Spezielle Relativitätstheorie. Oldenburg, 7th Edition.

Photo: N. Mölders

© 2013-2023 Nicole Mölders | All rights reserved